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Monte Carlo results in time-dependent hierarchical fiber-bundle models of fracture
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Is there any time threshold of stability in a time-dependent hierarchical load-transfer structure formed by N
elements, in the limit N—o? There is no rigorous proof, but the consensus to this question is yes. Here we
extend our previous work on these systems up to a size N=10°, using a power law breakdown rule and a new
more efficient Monte Carlo method. The new results confirm this positive consensus.
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I. INTRODUCTION

The modeling of fracture in disordered systems is a sub-
ject of great interest in natural and artificial materials [1]. A
time-dependent method to describe the failure of materials
under stress, within the fiber-bundle paradigm, was proposed
by Coleman [2]. In this model, a set (bundle) of elements
(fibers) is considered with each element having a prescribed
lifetime when subject to an applied stress (load). When ele-
ments fail, their load is redistributed to other elements of the
set according to a prescribed rule of transfer. As a conse-
quence of the load transfer, the lifetime of the receptors is
reduced and the main question is: How long does it take for
the whole set to collapse? These fiber-bundle models are
called dynamical or time-dependent [3-5], as opposed to
their static counterparts, which have also been intensively
studied [3,6].

Generally, three rules for the redistribution of the load are
considered. In the first, the stress of the failed element is
transferred equally to all surviving elements (ELS, for equal
load sharing). In the second, the load of the failed element is
transferred to the nearest surviving element(s) (LLS, for lo-
cal load sharing). Hierarchically organized load transfer rules
(HLS) are considered in the geophysical literature and espe-
cially in seismology [4,7-9]. In this field, the bundle is a
simplified representation of a fault, and the individual ele-
ments represent asperities in the fault plane. Here, the stress
released by a failed sub-bundle is transferred to a neighbor-
ing sub-bundle at the same hierarchical level. In other words,
the zone of stress transfer is equal in size to the zone of
failure, simulating the role of the Green’s function associated
with the elastic redistribution of stress adjacent to a rupture.
These hierarchical arrays have been used to model the pre-
cursory seismic activation that occurs before many major
earthquakes, and to implement the idea of discrete scale in-
variance [4,7].

In this paper, we will extend our previous numerical cal-
culations on time-dependent HLS systems [5,10] in order to
give more support and confidence to the current status of
opinion that these systems have a finite time threshold of
stability, in the limit N—cc. We will consider a hierarchical
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structure, or fractal tree, with an homogenous degree of
branching c¢=2, so that N=2", n being the number of levels
in the binary tree. In Sec. II we review the standard Monte
Carlo approach used for the computation of these systems. In
Sec. III we present a new Monte Carlo strategy and discuss
its practical advantages. Finally in Sec. IV, the new results
are graphically shown and we present our conclusions.

II. STANDARD MONTE CARLO APPROACH

In the standard Monte Carlo approach [3,4] the population
of initial lifetimes is fixed at the beginning of the simulation
and the subsequent breaking process is deterministic. In
other words, the disorder is guenched: A random lifetime is
assigned to each individual element at the onset, drawn from
a probability distribution. This is the only time during the
whole simulation where random numbers are utilized.

For engineering and heterogeneous natural materials, fail-
ure is often modeled by means of a Weibull distribution,

F(tjp) = 1 —exp[— {v(0)1;0}], (1)

where v(o) is the hazard rate under laod o and 8 is the
so-called Weibull index. In what follows we will use B=1,
which converts the Weibull distribution in an exponential
distribution. Operationally, for a fiber-bundle of size N, we
draw N random numbers uniformly distributed in the interval
[0, 1], which are identified with F(z;y), and compute from Eq.
(1) a failure time f,, for an initial applied load ¢;. This initial
load is equal for all elements in the bundle.

For the hazard rate v(o), two basic modalities are used in
the literature [3]: The exponential and the power-law types.
Here we will use as example the power law hazard rate, but
the exponential type can be implemented in the same way.
The power-law hazard rate has the form

v= vO(i)p, )

09

where obviously v, is the hazard rate of a single element
under load o,. Without losing generality one can choose v,
=0y=1. The exponent p, called in the rock physics literature
the stress corrosion index, is typically in the range between 2
and 5 for manmade structures [4] and 10-50 for rocks [11].
Inserting Eq. (2) into Eq. (1) with 8=1 an exponential dis-
tribution for failure times is obtained.
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Due to the load transfer from broken to unbroken ele-
ments, the individual load supported by the elements grows
during the progressive breakdown of the bundle, thus reduc-
ing their time to failure. This reduced time to failure Tjy is

given by [4]
T;
ti():f f(@ydh (3)
0 1]

where the power-law hazard rate has been used. As com-
mented on above, for solving the problem by a Monte Carlo
method each element 7 in the system is initially assigned a
random time to failure 7;, under load o, based on Eq. (1).
The actual time to failure of element i, T, will be reduced
below 1, every time load is transferred to this element due to
the failure of other elements in the system. This reduced
failure time 7} is obtained by requiring that Eq. (3) is satis-
fied under the new load (7). The T, corresponding to the
last failing element is the lifetime of the bundle, 7.

III. THE NEW MONTE CARLO METHOD

In Ref. [2], Coleman formulated the time-dependent
breaking of an ELS bundle by means of a differential equa-
tion of the radioactive decay type. This continuous formula-
tion cannot be applied to other load transfer schemes but it
provides a lucid perspective that leads to a different approach
to solve these discrete systems. In Refs. [5,10] this approach
was used together with a renormalization procedure to de-
scribe exactly the time to failure of a bundle of 2N fibers
using the values of the times to failure of all the configura-
tions of a bundle with N fibers. Unfortunately though, using
this method we could not provide exact results beyond a
modest N=32 fiber bundle. However, we were able to define
upper and lower bounds for the time of collapse, 7, of large
bundles. These bounds correctly forked the Monte Carlo re-
sults obtained using the standard approach explained in Sec.
II. These Monte Carlo results covered bundle sizes up to
2!4=16 384 fibers. The results presented in this paper, ob-
tained with a Monte Carlo strategy based on the “radioac-
tive” perspective mentioned above, extend these results up to
220=1 048 576 fibers. The new perspective is based on a
well-known property of the exponential distribution for fail-
ure times: The minimum among independent exponentially
distributed random variables is also exponentially distributed
and its parameter is the sum of parameters of the original
variables.

Initially, at r=0, the hierarchical bundle—or fractal
tree—is intact and all the N elements support a load o=0y
=1. The breakdown of the bundle proceeds sequentially, el-
ement after element, with an individual breaking and its ap-
propriate load redistribution, from i=1 until the breaking of
the Nth element, i=N. Thus, the i index will denote the suc-
cessive N steps of breaking of the bundle. The point then is
to determine how long it takes to break one element in the ith
step. This will be denoted by §; and its computation will be
specified later. In consequence, the time of collapse of the
total bundle is
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T=2 5. 4)

In an arbitrary intermediate state i of breaking, the bundle
will be in a configuration with i elements broken, and N—i
unbroken bearing different individual loads o;. The j index
extends to all N—i unbroken elements of the bundle.

Note that due to the conservation of the total load during
the breaking and redistributing processes, at any i, Noy=N
=E§V=_110-j'

Now, in analogy with a radioactive process, we define the
decay width of an unbroken element as

=0 (5)

J J

Note that I'; is the same thing as v in Eq. (2). The total decay
width of the configuration at step i can then be written as

N-i
I'i)=>T,. (6)
j=1

The lifetime of that configuration is simply the inverse of the

decay width:
Sl
T rG)
Finally, the probability of breaking the unbroken element j is

given by

(7)

L ®)
L)

which is the branching ratio of the jth path. Thus, the choice
of the specific fiber that breaks in each time step is materi-
alized by generating a random number between 0 and 1. We
see that using this approach we will obtain, in principle,
different values for the N deltas in each Monte Carlo simu-
lation of the total breaking of a bundle. The mean value of a
sufficiently large number of simulations provides a conver-
gent result for 7, the lifetime of the system. Thus, in contrast
to the standard method, here one starts with a unique con-
figuration, and the fluctuations in 7 arise from the different
paths of rupture resulting in each simulation (annealed dis-
order).

Computing times are very different for the standard and
new Monte Carlo methods. This speeding up of the algo-
rithm has enabled us to go beyond the limit of N=2'* fibers
reached in Ref. [10], up to the value N=27° fibers, a factor of
64 in system size. As an example, the time needed to break
10% systems of size N=2'" is 29.51 h with the standard
method and 6.52 h with the new method (Pentium 4 at
2.40 GHz). An additional benefit of the new Monte Carlo
method is a reduction in the dispersion of lifetimes. The
lifetimes are normally distributed around the mean lifetime
for each system size and the standard deviation is smaller
for the new Monte Carlo method. As an example, for an
N=2'0 system the standard deviation around the mean life-
time is 0.016 for the standard method and 0.008 for the new
method. This means that less realizations are needed to arrive
at a specific maximum error in the mean. Both advantages,

Pj(i) =
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FIG. 1. (Color online) Dimensionless lifetime, T, for an HLS
binary tree with n levels. Filled circles were calculated with the
standard Monte Carlo method. Red crosses have been computed
using the new method. The maximum system size with the new
method is N=22=1 048 576 elements.

the speed and the low deviation, make the new Monte Carlo
method a preferred choice when computing large hierarchi-
cal time-dependent fiber-bundle systems.

IV. RESULTS AND DISCUSSION

Figures 1-3 try to demonstrate that HLS systems have
indeed a nonzero lifetime in the limit of very large systems.
The Monte Carlo data as computed by the new method out-
lined above are shown in Fig. 1 as red crosses. The number
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FIG. 2. (Color online) Result of fitting an exponential function
to the Monte Carlo data as the number of data points included in the
fit is changed from 20 (all data points) to 7 (data points correspond-
ing to the seven biggest systems). After the smaller systems are
eliminated from the fit and only the 14 biggest systems are in-
cluded, the predicted 7. stabilizes at a value of 0.3328+0.0013
(shaded area). This range is compatible with the value of 0.3327
obtained from Fig. 3 (red line near the lower limit of the shaded
area).
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FIG. 3. (Color online) Log-linear plot of Monte Carlo data after
subtracting the asymptotic value. The red line is a linear fit from
n=14 to n=20 to show that lifetime data can be accurately approxi-
mated by an exponential function. The Monte Carlo points are ac-
companied by error bars, smaller than the symbol itself in most
cases except for n=20. The best straight line (linear fit with the
highest correlation coefficient, r=—0.999 73) is obtained by sub-
tracting 7.,,=0.3327 from the Monte Carlo results.

of realizations for each Monte Carlo point is not constant and
goes from 107 realizations for n< 10 systems to 10? for the
biggest system (n=20). In order to obtain the lifetime of the
system for N— o, the Monte Carlo data points were fitted to
an exponential function of the form

T=T,+A exp(kn) 9)

Here T.., A, and k are fitting parameters, of which only 7.,
the asymptotic lifetime of the system, is of interest. The mo-
tivation to fitting an exponential function will become clear
when discussing Fig. 3, but it is an obvious choice giving the
decay rate of the Monte Carlo points. Figure 1 also plots the
lifetimes computed with the standard Monte Carlo method
(filled black circles), and the upper and lower bounds derived
using, in each breaking step, appropriate means of the decay
widths (the harmonic mean for the upper bound and the geo-
metric bound for the lower bound [10]).

Two conclusions can be drawn from Fig. 1: (1) Both
Monte Carlo methods give identical results (given the error
bars); and (2) the Monte Carlo results are nicely delimited by
the upper and lower bounds computed with the harmonic and
geometric means. These results confirm the findings in Ref.
[10]. It is worth stressing the coincidence between both
Monte Carlo methods, as one method introduces randomness
via quenched disorder (standard method) whereas the other
introduces it via annealed disorder.

To check the quality of the exponential fit, a variable
number of Monte Carlo data points were included in the fit.
Figure 2 shows the evolution of the fitting parameter 7., as a
function of the number of Monte Carlo data points included
in the fit. The horizontal axis in Fig. 2 gives the number of
data points used in the exponential fit, starting at the right
with 20 points (all available Monte Carlo data) and ending
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on the left with 7 data points, those belonging to the biggest
systems. Thus, in going from right to left in Fig. 2 we discard
small-N systems from the fit. As can be seen, after discarding
systems smaller than n=14 (i.e., N=2'% fibers) the value
of T, reaches a plateau at 0.3328+0.0013 (shaded area in
Fig. 2).

Figure 3 looks at the same data from a different view-
point. If lifetimes really follow an exponential decay to a
nonzero value and we subtract this asymptotic value from the
lifetime we will obtain a function that goes to zero as n
— . Plotting the “corrected” lifetimes on a log-normal
graph should give a straight line. This is a more sensitive test
than the actual fit to Eq. (9), as deviations from a straight line
are much easier to detect. We have subtracted from the
Monte Carlo lifetimes a quantity € and plot the resulting
function on log-linear scales. Then, a least squares fit to the
n>14 data points was performed and the correlation coeffi-
cient r recorded. The parameter € was changed until obtain-
ing the highest correlation coefficient (i.e., the “best” straight
line on log-normal scales). The obtained value, e=T,
=0.3327+0.0001, is compatible with the previous result T,
=0.3328+0.0013. Both values are shown in Fig. 2 as a red
line and a shaded area, respectively.

This paper has strengthened the view put forward in Ref.
[10] that time-dependent HLS systems, in stark contrast to
their static counterparts, do have a critical point, in the sense
that their lifetime does not go to zero as the size of the
system is increased. In fact the numerical results obtained in
this paper are conclusive. In particular in Fig. 2 the horizon-
tality of the last 8 points indicates that it is not necessary to
go beyond the n=20 value studied here.

Table I summarizes what is known about the asymptotic
properties of the different stress-transfer modalities of fiber
bundles, both in the static and in the time-dependent ver-
sions. The result obtained for time-dependent HLS systems
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TABLE I. Main asymptotic results for the three standard mo-
dalities of fiber-bundle models in the static and time-dependent
cases (see [10] and references herein).

ELS LLS HLS
Static Critical point  No critical point  No critical point
Time-dep  Critical point No critical point Critical point

seems to break the symmetry suggested by previous findings
and shown in Table I: for the ELS and LLS cases, when the
static version has a critical point the time-dependent one also
has it (ELS systems), or the other way around (LLS system).
But for HLS systems the results presented here and in Refs.
[3,5,10] strongly suggest that the time-dependent version has
a critical point, notwithstanding the absence of critical point
of the static version.

From a practical point of view, when dealing with finite
systems, the difference between having and not having a
critical point is not so important as the rate at which a static
HLS system loses strength is [3,12]

N 1
IS
7 In(InN)’

where ¢ is the stress on the system at failure. This is an
extremely slow decrease in strength towards zero.

For many practical applications, the difference between “a
very slow decrease towards zero” and “a decrease towards a
nonzero value” is not fundamental. But from a conceptual
point of view, the above difference is indeed fruly fundamen-
tal.
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